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Boundary lubrication: Dynamics of squeeze-out
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The dynamics of the expulsion of the last liquid monolayer of molecules confined between two surfaces
~measured recently for the first time! has been analyzed by solving the two-dimensional Navier-Stokes equa-
tion combined with kinetic Monte Carlo simulations. Instabilities in the boundary line of the expelled film were
observed. We show that the instabilities produce a rough boundary for all length scales above a critical value
and a smooth boundary for shorter lengths. The squeezing out of all but a few trapped islands of liquid is
shown to be the result of the pressure gradient in the contact area.
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Sliding friction is one of the oldest problems in physic
and has undoubtedly a huge practical importance@1–3#. In
recent years, the ability to produce durable low-friction s
faces and lubricants has become an important factor in
miniaturization of moving components in technologically a
vanced devices. For such applications, the interest is focu
on the stability under pressure of thin lubricant films, sin
the complete squeeze-out of the lubricant from an interf
may give rise to cold-welded junctions, resulting in high fri
tion and catastrophically large wear.

In this Rapid Communication we investigate the la
stages of the approach of two elastic solids limited by t
curved surfaces, wetted by a lubricant film of microsco
thickness. Under these conditions, the behavior of the lu
cant is mainly determined by its interaction with the soli
that induce layering in the perpendicular direction@4–11#.
The thinning of the lubrication film occurs stepwise, by e
pulsion of individual layers@12–15#.

The dynamics of the layering transition has been stud
with the Surface Forces Apparatus by imaging the gap reg
in two dimensions@16#. The experiment was performed wit
a chain alcohol C11H23OH molecule, where the amount o
liquid expelled in the layering transitions during slow a
proach experiments, corresponds to a bilayer of molec
with the OH-groups pointing towards each other@17#. The
mica surfaces are covered by strongly bound monolayer
C11H23OH ~via the OH-group!, that cannot be removed b
squeezing, leading effectively to a CH3-terminated substrate
for any additional material inside the gap@18#. These coated
surfaces are very inert, and the additional alcohol does
wet the surfaces. Shear experiments showed that the s
friction force remains zero~and no stick-slip is observed! up
to and including the last alcohol layer, indicating that th
layer (n51) is in a 2D-liquid-like state. This is further sup
ported by viscosity measurements, by studying the damp
of mica oscillations@18#, which shows liquid-like behavior
down to the last expelled layer. Once this layer is expel
~corresponding to then50 situation!, the contact between th
CH3 terminated films strongly bound to the mica leads
solid-like friction, with nonzero static friction force, an
stick-slip during sliding.
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The dynamics of the layering transition separates into t
phases. In the first phase, the system is trapped in a m
stable state at the initial film thickness, i.e., one layer
alcohol molecules between the substrate-bound monolay
Thermal fluctuations of the two-dimensional density in th
layer eventually lead to the formation of a hole with a rad
that exceeds the critical radius. Once the nucleus is form
the growth phase begins, and the rest of the layer is quic
expelled. A snapshot picture during squeeze-out is show
Fig. 1 ~see also Ref.@16#!.

In this paper we consider the dynamics of expulsion
2D-liquid-like films. We focus on the evolution of th
boundary line separating then51 andn50 regions during
the layering transitionn51→0, when the nucleation of the
layering transition occurs off-center. Since the lubricati
film is assumed to be in a 2D-liquid-like state, the ba
equations of motion for the lubrication film are the continu
equation and the~generalized! Navier-Stokes equation fo
the 2D-velocity fieldv(x,t) ~we assume an incompressib
2D fluid! @1,12#,

FIG. 1. Snapshot during squeeze outn51→0 for C11H23OH
between mica surfaces. Black area corresponds ton50, and grey to
n51. The brightest areas correspond to the buildup of trap
pockets~see Ref.@16#!.
©2001 The American Physical Society03-1
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¹•v50, ~1!

]v

]t
1v•¹v52

1

mna
¹p1n¹2v2h̄v, ~2!

where p is the 2D-pressure,n the 2D-kinematic viscosity,
andmna the mass density. The last term in Eq.~2! describes
the ‘‘drag-force’’ from the substrate acting on the fluid. It
possible to show by dimensional arguments that, to a g
approximation, one can neglect the nonlinear and the vis
ity terms in Eq. ~2!, and assume that the velocity fie
changes so slowly that the time derivative term can be
glected. Thus,

¹p1mnah̄v50. ~3!

From this equation it follows that

v5¹f, ~4!

where

f52p/mnah̄. ~5!

The continuity equation~1! gives

¹2f50. ~6!

Now, from Eq.~6!, we see that the velocity potential can b
interpreted as an electrostatic potential. Furthermore, w
the 2D-pressurep is constant at the~outer! boundaryr 5R of
the contact area, at the inner boundary towards then50
area, it depends linearly on the perpendicular~3D! pressure
P(r ) (0,r ,R) via the relationp1(r )5p01P(r )a, where
R is the radius of the contact area,p0 the spreading pressure
and a the thickness of the monolayer~see Ref.@12#!. From
Hertz contact theory

P~r !5
3

2
P0S 12

r 2

R2D 1/2

. ~7!

Thus, the problem of findingf is mathematically equiva
lent to finding the electrostatic potential between two cyl
ders at different potentials,f052p0 /mnah̄ and f1(r )5

2p1(r )/mnah̄, where the outer cylinder has a circular sha
~radiusR), and the inner cylinder an unknown~time depen-
dent! shape to be determined. Except for the different bou
ary conditions, this situation is mathematically very simi
to viscous fingering, where the analogy to electrostatics
already been pointed out@see, e.g., Ref.@13~b!##.

It is easy to show that the time evolution of the bounda
line is unstable with respect to small perturbations. Let
first consider a perfectly smooth circular boundary line c
tered at the center of the contact area. For a perfect sys
~no defects or fluctuations!, by symmetry such a boundar
line would propagate in a symmetric~circular! way until it
reaches the outer boundary of the contact area. Now ass
that, due to a fluctuation, a small protrusion is formed on
boundary line, which will locally decrease the distance to
outer boundary liner 5R. By analogy to electrostatics, thi
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will give rise to an enhanced ‘‘draining’’ velocity of the fluid
at the protrusion, so that the boundary line at the protrus
will move faster towards the periphery than in the other
gions. This argument is valid for protrusions of any size, a
it follows that, within the model discussed above, the bou
ary line will be rough at all length scales. However, when
the free energy~per unit length! G ~line tension! of the
boundary line is taken into account~it was neglected above!,
the boundary line will be smooth on all length scales bel
some critical cut-off lengthlc , while it will be rough on
longer length scales, where@13,19#

lc52p~G/mnah̄v0!1/2, ~8!

where v0 is the velocity of the boundary line. The line
tensionG has a contribution from unsaturated bonds at
boundary line, and another much larger contribution from
energy stored in the elastic deformation field in the confin
solids in the vicinity of the boundary line@13#. Under the
experimental conditions in Ref.@16#, Eq. ~8! predicts lc
;5 mm, which equals 1/10 of the diameter of the conta
area. The experimental boundary line for C11H23OH is in-
deed rough at this length scale~see Fig. 1!, while it is smooth
on shorter length scales. Based on this result one may
argue that the linear size of the trapped islands should b
order lc ~or larger!, which again agrees with the observ
tions.

We have performed kinetic Monte Carlo~MC! simula-
tions @based on Eqs.~1!–~7!# to study the squeeze-out pro
cess in detail. The basic reasoning behind the MC mode
of the system is quite straightforward. At each MC step, o
solves the Laplace equation on a two-dimensional cell c
tered grid, and the interface line between fluid and squee
areas has to be moved in a manner that follows flow lin
This is followed by a line relaxation move that imposes li
tension on the moving interface.

We have used a volume discretization scheme@20# com-
bined with a successive over relaxation iterative proced
for solving the Laplace equation@21#. Boundary conditions
at the periphery were set to zero, while at the interface
tween squeezed and fluid areas the boundary conditions
position-dependent, determined from the Hertz expressio
described above.

Having solved the Laplace equation one can assoc
with each interface celli ~both fluid and squeezed ones! a
velocity parameterv i which represents the sum over all loc
velocity contributions that ‘‘move’’ the interface line into
cell i. Sincev i represent the flow velocity of a fluid cell into
a squeezed cell, or in the opposite direction, we choose
probability for transforming the state of celli from squeezed
→ fluid or fluid → squeezed, as

PV~ i !5
v i

max$v i%
. ~9!

Thus, the probability to accept a tentative MC move is p
portional tov i , as it should be. Note, however, that the tim
scale is nonlinearly related to the number of MC steps~since
3-2
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the normalization is different at each MC step!; in other
words, the time of a single MC stepDt}1/max$vi%.

To account for the line-tension effect we have chose
simple mechanism of one-dimensionalline diffusion of
squeezed patches at the interface line. Each line relaxa
step was composed ofM micro exchange steps, whereM is
the number of squeezed cells along the interface line.
each microstep, a squeezed interface patch and a ta
neighboring fluid patch were chosen at random for an
change process. The probability for accepting the excha
was

Pl~E!5H q DE<0

q e2bDE DE.0,
~10!

whereq5min(1,h̄ t /h̄s), whereh̄ t andh̄s are the sliding fric-
tion at the source and target cells, respectively.

In Eq. ~10!, DE5GD l is the change in line free energy
andD l is the change in the length of the interface line. F
every MC step we usually had a few tens of line relaxat
steps. An alternative way to introduce the line tension is
the curvature of the boundary line. This approach is harde
implement, but both treatments should give the same resu
enough line boundary diffusion moves are allowed for,
that the boundary line is close to thermal equilibrium at
stages during squeeze-out.

We focus on the dynamics of the layering transitionn
51→0. Figure 2~top! shows snapshot pictures of the la
ering transition for a Hertzian contact pressure and with
alistic line tension. Note that the boundary line is rough
all length scales~fractal! above a lower cut-off length deter
mined by the line tension. Figure 2~bottom! shows snapsho
pictures of the layering transition when the line tensionG50.
In this case a fractal pattern occurs for all length scales ab
the low-distance cut-off length, given by the mesh size. T
behavior is in sharp contrast with the experimental da
showing the fundamental importance of the line tension fo
correct description of the squeeze-out process.

During squeeze-out~Fig. 2 top! the local curvature of the
boundary line between then51 andn50 regions becomes
negative in some areas. Some of these areas eventuall
tach from the boundary and leave behind pockets ofn51

FIG. 2. Snapshots of the layering transition for Hertz cont
pressure and with the line tension included~top!, and with zero line
tension~bottom!.
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layer trapped material in the finaln50 state. We note tha
unless an island is centered in the center of the contact a
there will be a net tangential force acting on the island due
the spatial variation in the normal stress from a maximum
the center to zero at the periphery of the contact area. T
without defects~pinning centers!, the pockets move toward
the edge as a whole. There they form little necks throu
which liquid is squeezed out. This is exactly what is o
served in the experiments; see Fig. 1 and Ref.@16#. How-
ever, in the experiments some islands are also found to
hibit a negligible~undetectable! drift towards the periphery,
indicating that there may be some kind of pinning, even
the liquidlike layers used in the experiments. In order
simulate pinning we have introduced small, high friction a
eas, whereh̄ was taken to be 104 times higher than in the
remaining area. This produces pinning of the fluid in the
areas, resulting in a finite amount of trapped liquid even
very large times. The solid line in Fig. 3 shows the fraction
area occupied by the fluid as a function of time for an init
position of the nucleus atr 50.7R, and with pinning areas
corresponding to about 13% of trapped fluid remaining
longer times. The circles are the experimental results.

FIG. 4. Fractional area occupied by the fluid as a function
time with the initial position of the squeeze nucleus at the cen
~solid line!, at r 50.4 ~dotted line!, and for r 50.7R ~dash-dotted
line!. Without pinning areas.

t

FIG. 3. Fractional area occupied by the fluid as a function
time with the initial position of the squeeze nucleus atr 50.7R.
Solid line, theory; circles, experiment.
3-3
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factor relating the MC time to the real time has been cho
in order to make the agreement with the experimental dat
good as possible.

Figure 4 shows the fractional area occupied by the fluid
a function of time for an initial position of the nucleus at th
center~solid line!, at r 50.4R ~dotted line!, and atr 50.7R
~dash-dotted line!. Note that one can distinguish between tw
phases of squeeze-out: an initial ‘‘fast’’ phase up to a ti
t'1 s, and a slower phase where the fluid islands
squeezed out. These latter processes take a long time be
islands originally located close to the center of the cont
area experience a very weak net lateral force.

Figure 5 shows the same as Fig. 2, but now with a c
stant contact pressure. Note that the fast propagation a
the periphery of the contact area causes trapping of a h
fluid island. When a Hertzian contact pressure is assum
the increase in the squeeze-out speed close to the periph

FIG. 5. Snapshots of the layering transition for constant con
pressure and with the line tension included~top!, and with zero line
tension~bottom!.
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much smaller~since P→0 as r→R), which makes it pos-
sible to squeeze out much more fluid from the interior of t
contact area, resulting in much smaller ‘‘trapped’’ islands,
qualitative agreement with experiment. We also note tha
Fig. 5 the squeeze-out process stops when the drained
encircles the trapped island. At this point there is no press
difference across the fluid and the dynamics stops. This i
sharp contrast to the Hertzian contact pressure case, wh
squeeze-out force acts radially on any island of ‘‘trappe
fluid. Thus, in the latter case it is necessary to introdu
pinning centers in order for fluid to remain trapped for lar
times, as observed in the experiments.

To summarize, a lubrication fluid confined between tw
approaching surfaces form, in the limit of thin interface
well defined layers of molecular thickness, whose num
decreases in discontinuous steps with increasing app
pressure. We have studied the dynamics of the squeeze
by solving the 2D-Navier Stokes equations with an inter
cial friction term, and found the results to be in good agre
ment with the experimental data. We note that it is ve
important to use a variable~Hertzian! contact pressure profile
and to include the line tension: ifG50 or if the contact
pressure is assumed to be constant rather than Hertzian
computer simulations disagree qualitatively with the expe
ment.
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