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Boundary lubrication: Dynamics of squeeze-out
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The dynamics of the expulsion of the last liquid monolayer of molecules confined between two surfaces
(measured recently for the first tilnkas been analyzed by solving the two-dimensional Navier-Stokes equa-
tion combined with kinetic Monte Carlo simulations. Instabilities in the boundary line of the expelled film were
observed. We show that the instabilities produce a rough boundary for all length scales above a critical value
and a smooth boundary for shorter lengths. The squeezing out of all but a few trapped islands of liquid is
shown to be the result of the pressure gradient in the contact area.
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Sliding friction is one of the oldest problems in physics, The dynamics of the layering transition separates into two
and has undoubtedly a huge practical importaice3]. In phases. In the first phase, the system is trapped in a meta-
recent years, the ability to produce durable low-friction sur-stable state at the initial film thickness, i.e., one layer of
faces and lubricants has become an important factor in thalcohol molecules between the substrate-bound monolayers.
miniaturization of moving components in technologically ad- Thermal fluctuations of the two-dimensional density in this
vanced devices. For such applications, the interest is focusédyer eventually lead to the formation of a hole with a radius
on the stability under pressure of thin lubricant films, sincethat exceeds the critical radius. Once the nucleus is formed
the complete squeeze-out of the lubricant from an interfac1® growth phase begins, and the rest of the layer is quickly
may give rise to cold-welded junctions, resulting in high fric- €XPelled. A snapshot picture during squeeze-out is shown in
tion and catastrophically large wear. Fig. 1 (see also Ref.16]).

In this Rapid Communication we investigate the late In this paper we consider the dynamics of expulsion for

stages of the approach of two elastic solids limited by twoZD'“qu'd'“ke films. We focus on the evolution of the

. . : ._boundary line separating the=1 andn=0 regions during
curved surfaces, wetted by a lubricant film of microscopic . PR .
thickness. Under these conditions, the behavior of the IubriEhe Igyermg tr.a.nsmom—lao, when the_ nucleation O.f th?
RN ) o . X .~ _layering transition occurs off-center. Since the lubrication
cant is mainly determined by its interaction with the solids

hat i | i in th ol T film is assumed to be in a 2D-liquid-like state, the basic
that induce layering in the perpendicular directigh-11. o4 ations of motion for the lubrication film are the continuity

The thinning of the lubrication film occurs stepwise, by €X-gquation and thégeneralizell Navier-Stokes equation for

pulsion of individual layer$12-13. ~ the 2D-velocity fieldv(x,t) (we assume an incompressible
The dynamics of the layering transition has been studiegp fiyig) [1,17],

with the Surface Forces Apparatus by imaging the gap region
in two dimensiong16]. The experiment was performed with

a chain alcohol ¢H,sOH molecule, where the amount of
liquid expelled in the layering transitions during slow ap-
proach experiments, corresponds to a bilayer of molecules
with the OH-groups pointing towards each ott&7]. The
mica surfaces are covered by strongly bound monolayers of
C11H,30H (via the OH-group, that cannot be removed by
squeezing, leading effectively to a Giterminated substrate
for any additional material inside the gft8]. These coated
surfaces are very inert, and the additional alcohol does not
wet the surfaces. Shear experiments showed that the static
friction force remains zergand no stick-slip is observedp

to and including the last alcohol layer, indicating that this
layer (h=1) is in a 2D{iquid-like state. This is further sup-
ported by viscosity measurements, by studying the damping
of mica oscillationg 18], which shows liquid-like behavior
down to the last expelled layer. Once this layer is expelled
(corresponding to the=0 situatior), the contact between the FIG. 1. Snapshot during squeeze out1—0 for Cj;H,:0H
CHs; terminated films strongly bound to the mica leads tobetween mica surfaces. Black area corresponds—0, and grey to
solid-like friction, with nonzero static friction force, and n=1. The brightest areas correspond to the buildup of trapped
stick-slip during sliding. pockets(see Ref[16]).
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V.v=0, (1)  will give rise to an enhanced “draining” velocity of the fluid
at the protrusion, so that the boundary line at the protrusion
v 1 , = will move faster towards the periphery than in the other re-
v Vv=- mnan+ vVv—1gv, (2)  gions. This argument is valid for protrusions of any size, and
it follows that, within the model discussed above, the bound-
where p is the 2D-pressurey the 2D-kinematic viscosity, ary line will be rough at all length scalesHowever, when
andmn, the mass density. The last term in EB) describes the free energy(per unit length I' (line tension of the
the “drag-force” from the substrate acting on the fluid. It is boundary line is taken into accoufit was neglected aboye
possible to show by dimensional arguments that, to a goothe boundary line will be smooth on all length scales below
approximation, one can neglect the nonlinear and the viscosome critical cut-off length\., while it will be rough on
ity terms in Eq.(2), and assume that the velocity field longer length scales, whef&3,19
changes so slowly that the time derivative term can be ne-

glected. Thus, Ae=2m(T/mnav0) Y2 (8)
Vp-+mn,7v=0. ) where v, is the velocity of the boundary line. The line-
From this equation it follows that tensionI’ has a contribution from unsaturatgd bpnds at the
boundary line, and another much larger contribution from the
v=Vo, (4)  energy stored in the elastic deformation field in the confining
solids in the vicinity of the boundary lingL3]. Under the
where experimental conditions in Refl6], Eq. (8) predicts A,
_ ~5 um, which equals 1/10 of the diameter of the contact
$=—p/mny7. (5  area. The experimental boundary line fof;&,50H is in-
o ) ] deed rough at this length scdkee Fig. 1, while it is smooth
The continuity equatiotl) gives on shorter length scales. Based on this result one may also

argue that the linear size of the trapped islands should be of
order \. (or largey, which again agrees with the observa-

Now, from Eq.(6), we see that the velocity potential can be 1ONS- o '
interpreted as an electrostatic potential. Furthermore, while W€ have performed kinetic Monte CarléIC) simula-

the 2D-pressurg is constant at théoutey boundaryr =R of ~ tions [based on Eqsil)~(7)] to study the squeeze-out pro-
the contact area, at the inner boundary towardsrthed ~ C€SS N detail. The basic reasoning behind the MC modeling
area, it depends linearly on the perpendicu®D) pressure of the system is quite straightforward. At each MC step, one
P(r) (0<r<R) via the relationp(r)=po+ P(r)a, where solves the Laplace equation on a two-dimensional cell cen-
Ris the radius of the contact area, the spreading pressure, tered grid, and the interface line between fluid and squeezed

anda the thickness of the monolayésee Ref[12]). From  &€as has to be moved in a manner that follows flow lines.
Hertz contact theory This is followed by a line relaxation move that imposes line

tension on the moving interface.
3 r2\ 12 We have used a volume discretization sch¢@@ com-
P(r)= EPO( 1- @) (7)  bined with a successive over relaxation iterative procedure
for solving the Laplace equatidr21]. Boundary conditions

Thus, the problem of findingp is mathematically equiva- at the periphery were set to zero, while at the interface be-

lent to finding the electrostatic potential between two cylin-tween squeezed and fluid areas the boundary conditions were

ders at different potentialspo=— po/mn ; and ¢(r)= position-dependent, determined from the Hertz expression as
0o~ 0 a 1 -

— . . described above.
—pll(r)/mnar;, where the ou.ter cylinder has a_cwcular shape Having solved the Laplace equation one can associate
(radiusR), and the inner cylinder an unknowtime depen-  yih each interface celi (both fluid and squeezed ones
deny shape to be determined. Except for the different boundye|qity parametes; which represents the sum over all local
ary conditions, this situation is mathematically very similar

. . : ! velocity contributions that “move” the interface line into
to viscous fingering, where the analogy to electrostatics hagg| . Sincey; represent the flow velocity of a fluid cell into
already been pointed o{isee, e.g., Ref.13(b)]].

: - X a squeezed cell, or in the opposite direction, we choose the
_ Itis easy to show that the time evolution of the boundaryy,papility for transforming the state of célfrom squeezed
line is unstable with respect to small perturbations. Let uél fluid or fluid — squeezedas

first consider a perfectly smooth circular boundary line cen-
tered at the center of the contact area. For a perfect system

(no defects or fluctuationsby symmetry such a boundary Py(i)= B B
line would propagate in a symmetricirculan way until it maxv;}
reaches the outer boundary of the contact area. Now assume

that, due to a fluctuation, a small protrusion is formed on theéThus, the probability to accept a tentative MC move is pro-
boundary line, which will locally decrease the distance to theportional tov;, as it should be. Note, however, that the time

outer boundary ling =R. By analogy to electrostatics, this scale is nonlinearly related to the number of MC stegiisce

V2¢=0. (6)

Uj
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FIG. 2. Snapshots of the layering transition for Hertz contact
pressure and with the line tension includéab), and with zero line FIG. 3. Fractional area occupied by the fluid as a function of
tension(bottom). time with the initial position of the squeeze nucleusrat0.7R.

o . ) . Solid line, theory; circles, experiment.
the normalization is different at each MC stgjn other

words, the time of a single MC stepte 1/maxuv;}. layer trapped material in the final=0 state. We note that
To account for the line-tension effect we have chosen ainless an island is centered in the center of the contact area,
simple mechanism of one-dimensionkhe diffusion of  there will be a net tangential force acting on the island due to
squeezed patches at the interface line. Each line relaxatiahe spatial variation in the normal stress from a maximum at
step was composed & micro exchange steps, whekéis  the center to zero at the periphery of the contact area. Thus,
the number of squeezed cells along the interface line. Awithout defectgpinning centerg the pockets move towards
each microstep, a squeezed interface patch and a targéte edge as a whole. There they form little necks through
neighboring fluid patch were chosen at random for an exwhich liquid is squeezed out. This is exactly what is ob-
change process. The probability for accepting the exchangserved in the experiments; see Fig. 1 and R&6]. How-
was ever, in the experiments some islands are also found to ex-
hibit a negligible(undetectabledrift towards the periphery,
q AE<O indicating that there may be some kind of pinning, even for
qe PAE AE>0, (10 the liquidlike layers used in the experiments. In order to
simulate pinning we have introduced small, high friction ar-

whereq=min(1,7,/ »s, wheres, and ns are the sliding fric-  eas, wherey was taken to be fOtimes higher than in the
tion at the source and target cells, respectively. remaining area. This produces pinning of the fluid in these

In Eq. (10), AE=T'Al is the change in line free energy, areas, resulting in a finite amount of trapped liquid even for
andAl is the change in the length of the interface line. Forvery large times. The solid line in Fig. 3 shows the fractional
every MC step we usually had a few tens of line relaxationarea occupied by the fluid as a function of time for an initial
steps. An alternative way to introduce the line tension is vigposition of the nucleus at=0.7R, and with pinning areas
the curvature of the boundary line. This approach is harder teorresponding to about 13% of trapped fluid remaining for
implement, but both treatments should give the same result Ibnger times. The circles are the experimental results. The
enough line boundary diffusion moves are allowed for, so

P\(E)=

that the boundary line is close to thermal equilibrium at all 1

stages during squeeze-out. i
We focus on the dynamics of the layering transition 0.8

=1—0. Figure 2(top) shows snapshot pictures of the lay- g

ering transition for a Hertzian contact pressure and with re- S g6l

alistic line tension. Note that the boundary line is rough for §

all length scalegfracta) above a lower cut-off length deter- 2

mined by the line tension. Figure(Bottom shows snapshot 5 04

pictures of the layering transition when the line tendigr0. -

In this case a fractal pattern occurs for all length scales above 0.2}

the low-distance cut-off length, given by the mesh size. This

behavior is in sharp contrast with the experimental data, 0

showing the fundamental importance of the line tension for a
correct description of the squeeze-out process.

During squeeze-oufFig. 2 top the local curvature of the FIG. 4. Fractional area occupied by the fluid as a function of
boundary line between the=1 andn=0 regions becomes time with the initial position of the squeeze nucleus at the center
negative in some areas. Some of these areas eventually deelid ling), atr=0.4 (dotted ling, and forr=0.7R (dash-dotted
tach from the boundary and leave behind pockets sfl line). Without pinning areas.

time (s)
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much smaller(since P—0 asr—R), which makes it pos-
sible to squeeze out much more fluid from the interior of the
contact area, resulting in much smaller “trapped” islands, in
qualitative agreement with experiment. We also note that in
Fig. 5 the squeeze-out process stops when the drained area
encircles the trapped island. At this point there is no pressure
difference across the fluid and the dynamics stops. This is in
sharp contrast to the Hertzian contact pressure case, where a
squeeze-out force acts radially on any island of “trapped”
fluid. Thus, in the latter case it is necessary to introduce
pinning centers in order for fluid to remain trapped for large
times, as observed in the experiments.

To summarize, a lubrication fluid confined between two
FIG. 5. Snapshots of the layering transition for constant contacfippro":m,hlng surfaces form, in the .I'm't of thin interfaces,
pressure and with the line tension includéap), and with zero line well defined layers of molecular thickness, whose number
tension(bottom). decreases in discontinuous steps with increasing applied

pressure. We have studied the dynamics of the squeeze-out

factor relating the MC time to the real time has been chosetl’?.y solving the 2D-Navier Stokes equations with an interfa-

in order to make the agreement with the experimental data acgal fnct!on term, and_found the results to be in gogd_ agree-
good as possible. ment with the experimental data. We note that it is very

Figure 4 shows the fractional area occupied by the fluid aémportant to use a variabl¢iertziar) contact pressure profile

a function of time for an initial position of the nucleus at the and to mplude the line tension: =0 or if the contact
center(solid line), atr=0.4R (dotted ling, and atr=0.7R  Pressure is assumed to be constant rather than Hertzian, the

(dash-dotted ling Note that one can distinguish between two computer simulations disagree qualitatively with the experi-
phases of squeeze-out: an initial “fast” phase up to a time et
t~1 s, and a slower phase where the fluid islands are We thank E. Brener and P. Graf for useful discussions.
squeezed out. These latter processes take a long time beca®s®. and A.N. thank BMBF for a grant related to the
islands originally located close to the center of the contacGerman-Israeli Project Cooperation “Novel Tribological
area experience a very weak net lateral force. Strategies from the Nano-to Meso-Scales.” B.P. thanks

Figure 5 shows the same as Fig. 2, but now with a conPirelli for a grant related to “Physical principles of rubber
stant contact pressure. Note that the fast propagation alorfgiction and application to tires.” F.M. acknowledges the Al-
the periphery of the contact area causes trapping of a hugexander von Humbolt foundation, Bo@ermany. M.S. ac-
fluid island. When a Hertzian contact pressure is assumednowledges support from the U.S. Department of Energy
the increase in the squeeze-out speed close to the peripheryiinder Contract No. DE-AC03-76SF00098.
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